Аннотация к рабочей программе «<u>Математические методы и модели в научных исследованиях</u>»,

Уровень подготовки: высшее образование - подготовка научных и научнопедагогических кадров в аспирантуре

Научная специальность: 1.1.7 Теоретическая механика, динамика машин

Место дисциплины в структуре образовательной программы

Дисциплина Математические методы и модели в научных исследованиях является дисциплиной, направленной на подготовку к сдаче кандидатских экзаменов, образовательного компонента программы аспирантуры подготовки научных и научно-исследовательских кадров в аспирантуре по научной специальности 1.1.7 Теоретическая механика, динамика машин.

Рабочая программа составлена в соответствии с Федеральными государственными требованиями к структуре программам подготовки научных и научно-педагогических кадров в аспирантуре (адъюнктуре)», утвержденных приказом Министерства науки и высшего образования Российской Федерации (Минобрнауки России) от 20 октября 2021 года № 951; Постановление Правительства Российской Федерации от 30.11.2021 № 2122 "Об утверждении Положения о подготовке научных и научно-педагогических кадров в аспирантуре (адъюнктуре)".

Является неотъемлемой частью программы аспирантуры подготовки научных и научно-исследовательских кадров в аспирантуре. Дисциплина направлена на подготовку к сдаче кандидатского экзамена.

Целью освоения дисциплины является в формировании у аспирантов углубленных теоретических знаний важнейших численных методов и практических навыков в работе с интегрированными пакетами прикладных программ автоматизации инженерно-технических расчетов, применяемых для решения инженерно-технических задач.

Задачи: углубленное изучение фундаментальных знаний в области методов численного решения линейных и нелинейных дифференциальных уравнений, описывающих системы и процессы в области теоретической механики, сопротивления материалов, строительной механики, биомеханики и других дисциплин; возможность решения инженерно-технических задач, возникающих при научных и практических исследованиях в указанных областях.

Содержание и структура дисциплины (модуля)Содержание разделов и формы текущего контроля

Ī	$N_{\underline{0}}$	Наименование и содержание раздела	Содержание		
Ī		Методы решения систем линейных	1. Численные методы дифференциального		
		уравнений	исчисления.		
			2. Численные методы интегрального		
	1		исчисления.		
			3. Численные методы векторного		
		!	исчисления.		
			4. Численные методы вариационного		

		исчисления.
	Фермы и методы расчёта ферм в	1. Понятие и виды ферм. Понятие
	условиях равновесия. Применение	устойчивости ферм.
2	СЛАУ к расчёту ферм	2. Структура ферм.
		3. Расчет ферм на неподвижные нагрузки.
	Способы численного и символьного	1. Решение уравнения с одной переменной
	дифференцирования и	2. Решение системы нелинейных
3	интегрирования компьютерных	уравнений
	средств	3. Решение задачи на нахождение
		экстремальной точки
	Численные методы решения	1. Метод Эйлера.
	обыкновенных дифференциальных	2. Метод Рунге-Кутты.
4	уравнений. Методы Эйлера и Рунге-	3. Математический аппарат теории
	Кутты. Приложения Д.У. к теории	автоматического управления.
	автоматического регулирования	, ,
	Задачи приближенного вычисления	1. Интерполяция.
5	функций. Интерполяция и	2. Аппроксимация.
3	аппроксимация. Метод наименьших	3. Метод наименьших квадратов.
	квадратов	
	Применение методов Эйлера и	1. Применение методов Эйлера и Рунге-
	Рунге-Кутты к задачам динамики	Кутты к задачам динамики точки, определению
	точки, определению удлинений	удлинений стержней, нахождению прогибов из
	стержней, нахождению прогибов из	уравнения упругой линии балки.
6	уравнения упругой линии балки.	2. Применение методов Эйлера и Рунге-
	Применение методов Эйлера и	Кутты к анализу колебаний механических
	Рунге-Кутты к анализу колебаний	систем с несколькими степенями свободы
	механических систем с несколькими	
	степенями свободы	1
	Линейные комбинации, линейные	1. Линейные комбинации, линейные
	пространства, линейные	пространства. 2. Линейные преобразования.
7	преобразования. Задача поиска собственных значений для	1 1
	симметричной	3. Поиск собственных значений симметричной действительной матрицы.
	действительнозначной матрицы	симметричной действительной матрицы.
	Методы численного решения	1. Половинное деление.
	нелинейных уравнений. Половинное	2. Метод хорд.
8	деление, метод хорд. Метод	3. Метод Ньютона.
	Ньютона	
	Уравнение теплопроводности,	1. Уравнение теплопроводности.
	уравнение колебаний струны и	2. Уравнение колебаний струны.
9	устойчивость стержня при	3. Устойчивость стержня при продольном
	продольном изгибе	изгибе.
	Методы многомерной минимизации.	1. Многомерная минимизация.
10	Градиентный спуск. Сопряженные	2. Градиентный спуск.
	градиенты	3. Сопряженные градиенты.
	Введение в вариационные методы	1. Вариационные методы механики.
	механики. Вариационная постановка	Вариационная постановка и минимизация
11	и минимизация функционала. Слабая	функционала.
11	форма решения дифференциального	2. Слабая форма решения
	уравнения и её преимущество в	дифференциального уравнения и ее
	численном расчёте	преимущество в численном расчете.
12	Задачи динамики точки и	1. Динамическое действие нагрузок.

	простейшие уравнения	2.	Задача на учет сил инерции.	
	сопротивления материалов как	3.	Ударная нагрузка.	
	задача отыскания минимума полной	4.	Упругие колебания.	
	энергии	5.	Циклические нагрузки.	
	Метод Ритца и Галёркина для	1.	Проекционные методы. Метод	
13	решения краевой задачи.	Галер	Галеркина.	
13		2.	Метод Ритца приближенного поиска	
		мини	минимума функционала.	
	Балочный элемент: основы сборки в	1.	Базовые положения метода конечных	
	конечно-элементном методе.	элементов.		
	Одномерный линейный элемент для	2.	Основные типы конечных элементов.	
14	решение краевой задачи со	3.	Конечно-элементная дискретизация.	
	смешанными граничными	4.	Моделирование материалов.	
	условиями	5.	Краткие сведения о решении конечно-	
		элеме	нтных уравнений.	